Zum Inhalt springenZur Suche springen


Publikationen mit Peer-Review

[44] T. P. van Swieten, J. Steenhoff, A. Vlasblom, R. de Berg, S. Mattern, F. T. Rabouw, M. Suta,* A. Meijerink,* Extending the dynamic range of Boltzmann thermometers. Light Sci. Appl. 2022, accepted.

[43] M. Suta,* Performance of Boltzmann and crossover single-emitter luminescent thermometers and their recommended operation modesOpt. Mater. X 2022, 16, 100195, doi:10.1016/j.omx.2022.100195

[42] T. H. H. Sohi, F. L. T. Maas, C. Czekelius, M. Suta, V. Vasylyeva,* Co-crystallization of organic chromophore roseolumiflavin and effect on its optical characteristicsCrystEngComm 2022, Advance Article, doi:10.1039/D2CE00589A

[41] B. Bendel, M. Suta,* How to calibrate luminescent crossover thermometers: A note on “quasi”-Boltzmann systems.  J. Mater. Chem. C 2022, 10, 13805-13814, doi:10.1039/D2TC01152B

Invitation to the Emerging Investigators 2022 issue und selected as a “Hot Paper“

[40] K. Kniec, A. Kochanowska, L. Li, M. Suta, L. Marciniak, Ratiometric and lifetime-based luminescent thermometer exploiting the Co3+ luminescence in CaAl2O4:Co3+ and CaAl2O4:Co3+, Nd3+. J. Mater. Chem. C 2022, 10, 9278-9286, doi:10.1039/D2TC00952H

[39] A. N. C. Neto,* E. Kasprzycka, A. S. Souza, P. Gawryszewska, M. Suta, L. D. Carlos, O. L. Malta,* On the long decay time of the 7F5 level of Tb3+. J. Lumin. 2022, 248, 118933, doi:10.1016/j.jlumin.2022.118933.

[38] T. Zheng, M. Runowski,* P. Rodríguez-Hernández, A. Muñoz, F. J. Manjón, M. Sójka, M. Suta, E. Zych, S. Lis, V. Lavín,* Pressure-driven Configurational Crossover between 4f7 and 4f65d1 States – Giant Enhancement of Narrow Eu2+ UV-Emission Lines in SrB4O7 for Luminescence Manometry. Acta Materialia 2022, 231, 117886, doi:10.1016/j.actamat.2022.117886

[37] P. Netzsch, M. Hämmer, E. Turgunbajew, T. P. van Swieten, A. Meijerink,* H. A. Höppe,* M. Suta,* Beyond the energy gap law: the influence of selection rules and host compound effects on non-radiative transition rates in Boltzmann thermometers. Adv. Opt. Mater. 2022,  doi:10.1002/adom.202200059

[36] L. R. Arana, J. Ströh, J. Amtsfeld, G. Doungmo, D. Novikov, A. Khadiev, M. Etter, M. Wharmby, M. Suta, H. Terraschke,* Crystallisation of phosphates revisited: a multi-step formation process of SrHPO4. Z. Naturforsch. B 2022, 77, 263-272, doi:10.1515/znb-2021-0182

[35] D. Yu, H. Li, D. Zhang, Q. Zhang,* A. Meijerink, M. Suta,* One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+. Light: Sci. Appl. 2021, 10, 236, doi:10.1038/s41377-021-00677-5

[34] F. Ruegenberg, A. García-Fuente, M. Seibald, D. Baumann, S. Peschke, W. Urland, A. Meijerink, H. Huppertz, M. Suta,* Chasing Down the Eu2+ Ions: The Delicate Structure-Property Relationships in the Ultra-Narrow Band Phosphor K1.6Na2.1Li0.3[Li3SiO4]4:Eu2+. Adv. Opt. Mater. 2021, 2101643, doi:10.1002/adom.202101643

[33] M. Suta,* F. Cimpoesu, W. Urland, The angular overlap model of ligand field theory for f elements: An intuitive approach building bridges between theory and experiment. Coord. Chem. Rev. 2021, 441, 213981, doi:10.1016/j.ccr.2021.213981

[32] K. Kniec, W. Piotrowski, K. A. Ledwa, M. Suta,* L. D. Carlos, L. Marciniak,* From quencher to potent activator – Multimodal luminescence thermometry with Fe3+ in the oxides MAl4O7 (M = Ca, Sr, Ba). J. Mater. Chem. C 2021, 9, 6268-6276, doi:10.1039/D1TC01272J

[31] K. Elzbieciak-Piecka,* M. Suta, L. Marciniak,* Structurally induced tuning of the relative sensitivity of LaScO3:Cr3+ luminescent thermometers by co-doping lanthanide ions. Chem. Eng. J. 2021, 421, 129757, doi:10.1016/j.cej.2021.129757 

[30] A. M. Kaczmarek,* M. Suta, H. Rijckaert, T. P. van Swieten, I. Van Driessche, M. K. Kaczmarek, A. Meijerink,* High temperature (nano)thermometers based on LiLuF4:Er3+, Yb3+ nano- and microcrystals. Confounded results for core-shell nanocrystals.  J. Mater. Chem. C 2021, 9, 3589-3600, doi:10.1039/D0TC05865C

[29]  T. P. van Swieten, D. Yu,* T. Yu, S. J. W. Vonk, M. Suta, Q. Zhang, A. Meijerink, F. T. Rabouw,* A Ho3+-based luminescent thermometer for sensitive sensing over a wide temperature range. Adv. Opt. Mater. 2021, 9, 2001518, doi:10.1002/adom.202001518

[28] M. Suta,* A. Meijerink, A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers – Thermodynamic and Kinetic Guidelines for Optimum Performance. Adv. Theory Simul. 2020, 3, 2000176, doi:10.1002/adts.202000176

[27] T. Wylezich, R. Valois, M. Suta, A. Mutschke, P. Walke, C. Ritter, A. Meijerink, A. J. Karttunen, N. Kunkel,* Borate Hydrides as a New Material Class: Structure, Computational Studies, and Spectroscopic Investigations on Sr5(BO3)3H and Sr5(11BO3)3D. Chem. Eur. J. 2020, 26, 11742-11750, doi:10.1002/chem.202002273

[26] A. M. Kaczmarek,* M. Suta, H. Rijckaert, A. Abalymov, I. Van Driessche, A. G. Skirtach, A. Meijerink,* P. Van Der Voort, Visible and NIR upconverting Er3+-Yb3+ luminescent nanorattles and other hybrid PMO-inorganic structures for in vivo nanothermometry. Adv. Funct. Mater. 2020, 30, 202003101, doi:10.1002/adfm.202003101.

[25] P. Rönfeldt, N. Ruser, H. Reinsch, E. S. Grape, A. K. Inge, M. Suta, H. Terraschke, N. Stock,* New Scandium Containing Coordination Polymers with Linear Linker Molecules: Crystal Structures and Luminescence Properties. Eur. J. Inorg. Chem. 2020, 2020, 2737-2743, doi:10.1002/ejic.202000231

[24] M. Suta,* Ž. Antić, V. Đorđević, S. Kuzman, M. D. Dramićanin, A. Meijerink, Making Nd3+ a sensitive luminescent thermometer for physiological temperatures – An account of pitfalls in Boltzmann thermometry. Nanomaterials (invitation by editor) 2020, 10, 543, doi:10.3390/nano10030543

[23] M. Suta, F. Lavoie-Cardinal, C. Wickleder,* Underestimated color centers: Defects as useful reducing agents in lanthanide-activated materials? Angew. Chem. 2020, 132, 11042-11047, doi:10.1002/ange.202002009; Angew. Chem. Int. Ed. 2020, 59, 10949-10954, doi:10.1002/anie.202002009

[22] V. K. Gramm, D. Smets, I. Grzesiak, T. Block, R. Pöttgen, M. Suta, C. Wickleder, T. Lorenz, U. Ruschewitz,* Eu(O2C-CºC-CO2): An EuII Containing Anhydrous Coordination Polymer with High Stability and Negative Thermal Expansion. Chem. Eur. J. 2020, 26, 2726-2734, doi:10.1002/chem.201904966

[21] T. Wylezich, A. D. Sontakke, V. Castaing, M. Suta, B. Viana, A. Meijerink, N. Kunkel,* One ion, many facets: Efficient, structurally, and thermally sensitive luminescence of Eu2+ in binary and ternary strontium borohydride chlorides. Chem. Mater. 2019, 31, 8957-8968, doi:10.1021/acs.chemmater.9b03048

[20] V. Lorenz, P. Liebing, M. Suta, F. Engelhardt, L. Hilfert, S. Busse, S. Wang, C. Wickleder,* F. T. Edelmann,* Synthesis, structure, complexation, and luminescence properties of the first metal-organic curcumin compound Bis(4-triphenylsiloxy)curcumin. J. Lumin. 2019, 211, 243-250; doi:10.1016/j.jlumin.2019.02.058

[19] M. Suta,* T. Mannel, Dynamical symmetries hidden in the form of the potential. Phys. Rev. A 2019, 99, 032116; doi:10.1103/PhysRevA.99.032116

[18] M. Suta,* C. Wickleder,* Synthesis, spectroscopic properties and applications of divalent lanthanides apart from Eu2+. J. Lumin. 2019, 210, 210-238; doi:10.1016/j.jlumin.2019.02.031

[17] M. Suta, F. Lavoie-Cardinal, J. Olchowka, C. Wickleder,* Nature of Localized Excitons in CsMgX3 (X = Cl, Br, I) and Their Interactions with Eu2+ Ions. Phys. Rev. Appl. 2018, 9, 064024; doi:10.1103/Phys.Rev.Appl.9.064024

[16] M. Suta, N. Harmgarth, M. Kühling, P. Liebing, F. T. Edelmann,* C. Wickleder,* Bright Photoluminescence of [{(Cpt-Bu2)2Ce(µ-Cl)}2]: A Valuable Tool for the Determination of the Oxidation State of Cerium. Chem. Asian J. 2018, 13, 1038-1044; doi:10.1002/asia.201701818

[15] V. K. Gramm, A. Schuy, M. Suta, C. Wickleder, C. Sternemann, U. Ruschewitz,* Completing the Series: New MOFs of Composition [RE2(ADC)3(H2O)6] ∙ 2H2O with RE = Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Y and ADC2- = Acetylenedicarboxylate (-O2C-CºC-CO2-). Z. Anorg. Allg. Chem. 2018, 644, 127-135; doi:10.1002/zaac.201700361

[14] P. Polzin, I. V. Eliani, J. Ströh, M. Braun, N. Rüser, N. Heidenreich, P. Rönfeldt, F. Bertram, C. Näther, S. Wöhlbrandt, M. Suta, H. Terraschke,* From ligand exchange to reaction intermediates: What does really happen during synthesis of emissive complexes? Phys. Chem. Chem. Phys. 2018, 20, 7428-7437; doi:10.1039/C7CP07142F; Inside front cover: Phys. Chem. Chem. Phys. 2018, 20, 7366; doi:10.1039/C8CP90060D

[13] J. Olchowka, O. Mentré,* H. Kabbour, M. Colmont, M. Adlung, M. Suta, C. Wickleder,* Bonding Scheme and Optical Properties in BiM2O2(PO4) (M = Cd, Mg, Zn): Experimental and Theoretical Analysis. Chem Eur. J. 2017, 23, 15694-15703; doi:10.1002/chem.201702373

[12] J. Olchowka, M. Suta, C. Wickleder,* Green Synthesis of Small Nanoparticles of A2SiF6 (A = Li – Cs) using Ionic Liquids as Solvent and Fluorine Source: A Novel Simple Approach without HF. Chem. Eur. J. 2017, 23, 12092-12095; doi:10.1002/chem.201702375; Frontispiece: Chem. Eur. J. 2017, 23, 12092; doi:10.1002/chem.201785067

[11] M. Suta, M. Kühling, P. Liebing, F. T. Edelmann,* C. Wickleder,* Photoluminescence properties of the “bent sandwich-like” compounds [Eu(TpiPr2)2] and [Yb(TpiPr2)2] – Intermediates between nitride-based phosphors and metallocenes. J. Lumin. 2017, 187, 62-68; doi:10.1016/j.jlumin.2017.02.054

[10] M. Suta, T. Senden, J. Olchowka, M. Adlung, A. Meijerink,* C. Wickleder,* Decay times of the spin-forbidden and spin-enabled transitions of Yb2+ doped in CsCaX3 and CsSrX3 (X = Cl, Br, I). Phys. Chem. Chem. Phys. 2017, 19, 7188-7194; doi:10.1039/C7CP00581D        

[9] M. Suta, C. Wickleder,* Spin Crossover of Yb2+ in CsCaX3 and CsSrX3 (X = Cl, Br, I) – A Guideline to Novel Halide-Based Scintillators. Adv. Funct. Mater. 2017, 27, 1602783; doi:10.1002/adfm.201602783

[8] M. Suta, W. Urland, C. Daul, C. Wickleder,* Photoluminescence properties of Yb2+in CsCaX3 and CsSrX3 (X = Cl, Br, I) – a comparative study. Phys. Chem. Chem. Phys. 2016, 18, 13196-13208; doi:10.1039/C6CP00085A; Inside back cover: Phys. Chem. Chem. Phys. 2016, 18, 13719; doi:10.1039/C6CP90125E

[7] H. Ramanantoanina, F. Cimpoesu,* C. Göttel, M. Sahnoun, B. Herden, M. Suta, C. Wickleder, C. Daul,* W. Urland,* Prospecting Lighting Applications with Ligand Field Tools and Density Functional Theory: A First-Principles Account of the 4f7-4f65d1 Luminescence of CsMgBr3:Eu2+. Inorg. Chem. 2015, 54, 8319-8326; doi:10.1021/acs.inorgchem.5b00988

[6] M. Kühling, C. Wickleder,* M. J. Ferguson, C. G. Hrib, R. McDonald, M. Suta, L. Hilfert, J. Takats,* F. T. Edelmann,* Investigation of the “bent sandwich-like” divalent lanthanide pyrazolylborates Ln(TpiPr2)2 (Ln = Sm, Eu, Yb). New. J. Chem. 2015, 39, 7617-7625; doi:10.1039/C5NJ00568J

[5] M. Suta, C. Wickleder,* Photoluminescence of Eu2+ in CsMI3 (M = Mg, Ca, Sr) – a spectroscopic probe on structural distortionsJ. Mater. Chem. C 2015, 3, 5233-5245; doi:10.1039/C5TC00515A

[4] H. Terraschke, M. Suta, M. Adlung, S. Mammadova, N. Musayeva, R. Jabbarov, M. Nazarov, C. Wickleder,* SrAl2O4:Eu2+(, Dy3+) Nanosized Particles: Synthesis and Interpretation of Temperature-Dependent Optical PropertiesJ. Spectrosc. 2015, Article ID 541958, 1-12; doi:10.1155/2015/541958

[3] A. García-Fuente, F. Cimpoesu, H. Ramanantoanina, B. Herden, C. Daul, M. Suta, C. Wickleder, W. Urland,* A ligand field theory-based methodology for the characterization of the Eu2+ [Xe]4f65d1 excited states in solid compounds. Chem. Phys. Lett. 2015, 622, 120-123; doi:10.1016/j.cplett.2015.01.031

[2] M. Suta, P. Larsen, F. Lavoie-Cardinal, C. Wickleder,* Photoluminescence of Eu2+ in CsMBr3 (M = Mg, Ca, Sr) – A novel strategy for the development of low-energy emitting phosphors. J. Lumin. 2014, 149, 35-44; doi:10.1016/j.jlumin.2013.12.040

[1] H. C. Streit, J. Kramer, M. Suta, C. Wickleder,* Red, Green, and Blue Photoluminescence of Ba2SiO4:M (M = Eu3+, Eu2+, Sr2+) Nanophosphors. Materials 2013, 6, 3079-3096; doi:10.3390/ma6083079

Publikationen ohne Peer-Review

[7] M. Suta, J. George, Ungewöhnliche Oxidationsstufen, (un)gewöhnliche Maßnahmen. Nachr. Chem. 2021, 69, 73-78, doi:10.1002/nadc.20214109053

[6] H. Stein, M. Suta, J. George, Die Materialsynthesemaschine. Nachr. Chem. 2020, 68, 66-69, doi:10.1002/nadc.20204096061

[5] M. Suta, J. George, Temperatur mit Licht messen. Nachr. Chem. 2020, 68, 68-73, doi:10.1002/nadc.20204096060

[4] J. George, M. Suta, Vorhersagen aus Hochdurchsatzstudien. Nachr. Chem. 2020, 68, 80-83, doi:10.1002/nadc.20204096056

[3] M. Suta, J. George, Das Rezept für schmalbandige Leuchtstoffe. Nachr. Chem. 2020, 68, 54-58, doi:10.1002/nadc.20204096059

[2] J. George, M. Suta, Neue Materialien vorhersagen: Maschinelles Lernen als Werkzeug? Nachr. Chem. 2020, 68, 49-52, doi:10.1002/nadc.20204093535

[1] O. Clemens, N. Kunkel, M. Suta, Sieh mal, seltene Erden. Nachr. Chem. 2019, 67, 71-75; doi:10.1002/nadc.20194089019