Zum Inhalt springenZur Suche springen

Publikationen

Publikationen mit Peer-Review

M. Suta,* Small & Simple: Next-generation miniaturized diffraction-based spectrometer with computational reconstruction algorithms.

Light: Sci. Appl., News & Views 2024, akzeptiert, doi:10.1038/s41377-024-01449-7

F. Steinke, S. Bette, N. Ruser, T. Otto, H. Terraschke,* R. Dinnebier, N. Stock,* M. Suta,* A multifunctional phosphonate-based, photochromic metal-organic framework: highly sensitive turn-on photoluminescence through a variety of physical stimuli.

Adv. Funct. Mater. 2024, accepted, doi:10.1002/adfm.202403631

X. Ke, R. Oestreich, T. H. H. Sohi, M. Lounasvuori, J. G. A. Ruthes, Y. Zorlu, P. Seiffert, T. Strothmann, P. Tholen, M. Suta, V. Presser, T. Petit, C. Janiak, J. Beckmann, J. Schmedt auf der Günne,* G. Yücesan,*
Pyrophosphonate Covalent Organic Frameworks.

ChemRXiv 2024, doi:10.26434/chemrxiv-2024-jfg84

I. Widmann, G. Kinik, M. Schwarz, C. Wüstefeld, D. Johrendt, M. Tribus, C. Hejny, L. Bayarjagal, M. Jähnig, R. Glaum, L. Dubrovinsky, G. Heymann, K. Wurst, M. Suta,*, H. Huppertz,Real Competitors to Ruby: The Triel Oxonitridoborates AlB4O6N, Al0.97Cr0.03B4O6N, and Al0.83Cr0.17B4O6N.

Adv. Funct. Mater. 2024, Early View, 2400054, doi:10.1002/adfm.202400054

T. H. Y. Beglau, M. N. A. Fetzer, I. Boldog, T. Heinen, M. Suta, C. Janiak,* G. Yücesan,* Exceptionally stable and super-efficient electrocatalysts derived from semiconducting metal phosphonate frameworks.

Chem. Eur. J. 2023, 30, e202302765, doi:10.1002/chem.202302765

L. M. Träger, L. C. Pasqualini, H. Huppertz, J. Bruns,* M. Suta,* Photoluminescence of Mn2+ in the Borosulfate Zn[B2(SO4)4]:Mn2+ - A Tool to Detect Weak Coordination Behavior of Ligands.

Angew. Chem. 2023, Early View, e202309212, doi:10.1002/ange.202309212; Angew. Chem. Int. Ed. 2023, Early View, e202309212, doi:10.1002/anie.202309212

A. Fischereder, M. Rödl, M. Suta, T. S. Hofer,* H. Schwartz,* From Blue Jeans to Luminescent Materials: Designing Thioindigo-Based Red-Fluorescent Hybrid Systems.

J. Phys. Chem. C 2023, 127, 15657-15668, doi:10.1021/acs.jpcc.3c04123

C. D. S. Brites, R. Marin, M. Suta, A. N. C. Neto, E. Ximendes, D. Jaque, L. Carlos,* Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications.

Adv. Mater. 2023, 35, 2302749, doi:10.1002/adma.202302749

P. Schmeinck, D. Sretenović, J. Guhl, R. Kühnemuth, C. A. M. Seidel,* C. M. Marian,* M. Suta,* C. Ganter,* Luminescent Copper(I)-Complexes with an Anionic NHC obtained via a Coordination Polymer as Versatile Precursor.

Eur. J. Inorg. Chem. 2023, Early View, e202300416 doi:10.1002/ejic.202300416

N. Stopikowska, P. Wozny, M. Suta, T. Zheng, S. Lis, M. Runowski,* Influence of excitation and detection geometry on optical temperature readouts – reabsorption effects in luminescence thermometry.

J. Mater. Chem. C 2023, 11, 9620-9627, doi:10.1039/D3TC01684F

I. V. Vrubel, V. Khanin, M. Suta, R. G. Polozkov, E. Cherotchenko, A quantum model of charge capture and release onto/from deep traps.

Phys. Chem. Chem. Phys. 2023, 25, 18364-18377, doi:10.1039/D3CP01271A

D. Püschel, J. Wiefermann, S. Hédé, T. Heinen, L. Pfeifer, O. Weingart, M. Suta,* T. J. J. Müller,* C. Janiak,* Molecular design of phenazine-5,10-diyl- dibenzonitriles and the impact on their thermally activated delayed fluorescence properties.

J. Mater. Chem. C 2023, 11, 8982-8991, doi:10.1039/d3tc01228j

W. M. Piotrowski, K. Kniec-Stec, M. Suta, B. Bogielski, B. Pozniak, L. Marciniak,* Positive luminescence thermal coefficient of Mn2+ ions for highly sensitive luminescence thermometry.

Chem. Eng. J. 2023, 464, 142492, doi:10.1016/j.cej.2023.142492

L. N. Kloeters, J. A. Meissner, L. Presser, M. Suta, J. Meisner, T. J. J. Müller,* 3-Ligated Phenothiazinyl-terephthalonitrile Dyads and Triads – Synthesis, Electronic Properties, Delayed Fluorescence and Electronic Structure.

Chem. Eur. J. 2023, accepted, doi:10.1002/chem.202301114

F. Ruegenberg, A. García-Fuente, M. Seibald, D. Baumann, G. Hoerder, T. Fiedler, W. Urland, H. Huppertz, A. Meijerink, M. Suta,*, Mixed Microscopic Eu2+ Occupancies in the Next-Generation Red LED Phosphor Sr[Li2Al2O2N2]:Eu2+ (SALON:Eu2+).

Adv. Opt. Mater. 2023, 11, 2202732, doi:10.1002/adom.202202732

D. V. Berdnikova,* S. Steup, M. Bolte, M. Suta, Design of Aurone-Based Dual-State Emissive (DSE) Fluorophores.

Chem. Eur. J. 2023, 29, e202300356, doi:10.1002/chem.202300356

T. P. van Swieten, J. Steenhoff, A. Vlasblom, R. de Berg, S. Mattern, F. T. Rabouw, M. Suta,* A. Meijerink,* Extending the dynamic range of Boltzmann thermometers. Light Sci. Appl. 2022, doi:10.1038/s41377-022-01028-8.

M. Suta,* Performance of Boltzmann and crossover single-emitter luminescent thermometers and their recommended operation modesOpt. Mater. X 2022, 16, 100195, doi:10.1016/j.omx.2022.100195

T. H. H. Sohi, F. L. T. Maas, C. Czekelius, M. Suta, V. Vasylyeva,* Co-crystallization of organic chromophore roseolumiflavin and effect on its optical characteristicsCrystEngComm 2022, Advance Article, doi:10.1039/D2CE00589A

B. Bendel, M. Suta,* How to calibrate luminescent crossover thermometers: A note on “quasi”-Boltzmann systems.  J. Mater. Chem. C 2022, 10, 13805-13814, doi:10.1039/D2TC01152B

Invitation to the Emerging Investigators 2022 issue und selected as a “Hot Paper“

K. Kniec, A. Kochanowska, L. Li, M. Suta, L. Marciniak, Ratiometric and lifetime-based luminescent thermometer exploiting the Co3+ luminescence in CaAl2O4:Co3+ and CaAl2O4:Co3+, Nd3+. J. Mater. Chem. C 2022, 10, 9278-9286, doi:10.1039/D2TC00952H

A. N. C. Neto,* E. Kasprzycka, A. S. Souza, P. Gawryszewska, M. Suta, L. D. Carlos, O. L. Malta,* On the long decay time of the 7F5 level of Tb3+. J. Lumin. 2022, 248, 118933, doi:10.1016/j.jlumin.2022.118933.

T. Zheng, M. Runowski,* P. Rodríguez-Hernández, A. Muñoz, F. J. Manjón, M. Sójka, M. Suta, E. Zych, S. Lis, V. Lavín,* Pressure-driven Configurational Crossover between 4f7 and 4f65d1 States – Giant Enhancement of Narrow Eu2+ UV-Emission Lines in SrB4O7 for Luminescence Manometry. Acta Materialia 2022, 231, 117886, doi:10.1016/j.actamat.2022.117886

P. Netzsch, M. Hämmer, E. Turgunbajew, T. P. van Swieten, A. Meijerink,* H. A. Höppe,* M. Suta,* Beyond the energy gap law: the influence of selection rules and host compound effects on non-radiative transition rates in Boltzmann thermometers. Adv. Opt. Mater. 2022,  doi:10.1002/adom.202200059

L. R. Arana, J. Ströh, J. Amtsfeld, G. Doungmo, D. Novikov, A. Khadiev, M. Etter, M. Wharmby, M. Suta, H. Terraschke,* Crystallisation of phosphates revisited: a multi-step formation process of SrHPO4. Z. Naturforsch. B 2022, 77, 263-272, doi:10.1515/znb-2021-0182

D. Yu, H. Li, D. Zhang, Q. Zhang,* A. Meijerink, M. Suta,* One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+.

Light: Sci. Appl. 2021, 10, 236, doi:10.1038/s41377-021-00677-5

Awarded as “Hot Paper 2023“ and “Highly Cited Papers 2023“ of the journal Light: Science & Applications

F. Ruegenberg, A. García-Fuente, M. Seibald, D. Baumann, S. Peschke, W. Urland, A. Meijerink, H. Huppertz, M. Suta,* Chasing Down the Eu2+ Ions: The Delicate Structure-Property Relationships in the Ultra-Narrow Band Phosphor K1.6Na2.1Li0.3[Li3SiO4]4:Eu2+.

Adv. Opt. Mater. 2021, 9, 2101643, doi:10.1002/adom.202101643

M. Suta,* F. Cimpoesu, W. Urland, The angular overlap model of ligand field theory for f elements: An intuitive approach building bridges between theory and experiment.

Coord. Chem. Rev. 2021, 441, 213981, doi:10.1016/j.ccr.2021.213981

K. Kniec, W. Piotrowski, K. A. Ledwa, M. Suta,* L. D. Carlos, L. Marciniak,* From quencher to potent activator – Multimodal luminescence thermometry with Fe3+ in the oxides MAl4O7 (M = Ca, Sr, Ba).

 J. Mater. Chem. C 2021, 9, 6268-6276, doi:10.1039/D1TC01272J

K. Elzbieciak-Piecka,* M. Suta, L. Marciniak,* Structurally induced tuning of the relative sensitivity of LaScO3:Cr3+ luminescent thermometers by co-doping lanthanide ions.

Chem. Eng. J. 2021, 421, 129757, doi:10.1016/j.cej.2021.129757   

A. M. Kaczmarek,* M. Suta, H. Rijckaert, T. P. van Swieten, I. Van Driessche, M. K. Kaczmarek, A. Meijerink,* High temperature (nano)thermometers based on LiLuF4:Er3+, Yb3+ nano- and microcrystals. Confounded results for core-shell nanocrystals.

J. Mater. Chem. C 2021, 9, 3589-3600, doi:10.1039/D0TC05865C

T. P. van Swieten, D. Yu,* T. Yu, S. J. W. Vonk, M. Suta, Q. Zhang, A. Meijerink, F. T. Rabouw,* A Ho3+-based luminescent thermometer for sensitive sensing over a wide temperature range.

Adv. Opt. Mater. 2021, 9, 2001518, doi:10.1002/adom.202001518

M. Suta,* A. Meijerink, A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers – Thermodynamic and Kinetic Guidelines for Optimum Performance.

Adv. Theory Simul. 2020, 3, 2000176, doi:10.1002/adts.202000176

Ausgezeichnet als “Top Cited Paper 2020 – 2021” des Journals Advanced Theory and Simulations

T. Wylezich, R. Valois, M. Suta, A. Mutschke, P. Walke, C. Ritter, A. Meijerink, A. J. Karttunen, N. Kunkel,* Borate Hydrides as a New Material Class: Structure, Computational Studies, and Spectroscopic Investigations on Sr5(BO3)3H and Sr5(11BO3)3D.

Chem. Eur. J. 2020, 26, 11742-11750, doi:10.1002/chem.202002273

 A. M. Kaczmarek,* M. Suta, H. Rijckaert, A. Abalymov, I. Van Driessche, A. G. Skirtach, A. Meijerink,* P. Van Der Voort, Visible and NIR upconverting Er3+-Yb3+ luminescent nanorattles and other hybrid PMO-inorganic structures for in vivo nanothermometry.

Adv. Funct. Mater. 2020, 30, 202003101, doi:10.1002/adfm.202003101

P. Rönfeldt, N. Ruser, H. Reinsch, E. S. Grape, A. K. Inge, M. Suta, H. Terraschke, N. Stock,* New Scandium Containing Coordination Polymers with Linear Linker Molecules: Crystal Structures and Luminescence Properties.

Eur. J. Inorg. Chem. 2020, 2020, 2737-2743, doi:10.1002/ejic.202000231

M. Suta,* Ž. Antić, V. Đorđević, S. Kuzman, M. D. Dramićanin, A. Meijerink, Making Nd3+ a sensitive luminescent thermometer for physiological temperatures – An account of pitfalls in Boltzmann thermometry.

 Nanomaterials (Einladung des Editors) 2020, 10, 543, doi:10.3390/nano10030543

M. Suta, F. Lavoie-Cardinal, C. Wickleder,* Underestimated color centers: Defects as useful reducing agents in lanthanide-activated materials?

Angew. Chem. 2020, 132, 11042-11047, doi:10.1002/ange.202002009; Angew. Chem. Int. Ed. 2020, 59, 10949-10954, doi:10.1002/anie.202002009

V. K. Gramm, D. Smets, I. Grzesiak, T. Block, R. Pöttgen, M. Suta, C. Wickleder, T. Lorenz, U. Ruschewitz,* Eu(O2C-CºC-CO2): An EuII Containing Anhydrous Coordination Polymer with High Stability and Negative Thermal Expansion.

Chem. Eur. J. 2020, 26, 2726-2734, doi:10.1002/chem.201904966

T. Wylezich, A. D. Sontakke, V. Castaing, M. Suta, B. Viana, A. Meijerink, N. Kunkel,* One ion, many facets: Efficient, structurally, and thermally sensitive luminescence of Eu2+ in binary and ternary strontium borohydride chlorides.

Chem. Mater. 2019, 31, 8957-8968, doi:10.1021/acs.chemmater.9b03048

V. Lorenz, P. Liebing, M. Suta, F. Engelhardt, L. Hilfert, S. Busse, S. Wang, C. Wickleder,* F. T. Edelmann,* Synthesis, structure, complexation, and luminescence properties of the first metal-organic curcumin compound Bis(4-triphenylsiloxy)curcumin.

J. Lumin. 2019, 211, 243-250; doi:10.1016/j.jlumin.2019.02.058

M. Suta,* T. Mannel, Dynamical symmetries hidden in the form of the potential.

Phys. Rev. A 2019, 99, 032116; doi:10.1103/PhysRevA.99.032116

M. Suta,* C. Wickleder,* Synthesis, spectroscopic properties and applications of divalent lanthanides apart from Eu2+.

J. Lumin. 2019, 210, 210-238; doi:10.1016/j.jlumin.2019.02.031

M. Suta, F. Lavoie-Cardinal, J. Olchowka, C. Wickleder,* Nature of Localized Excitons in CsMgX3 (X = Cl, Br, I) and Their Interactions with Eu2+ Ions.

Phys. Rev. Appl. 2018, 9, 064024; doi:10.1103/Phys.Rev.Appl.9.064024

M. Suta, N. Harmgarth, M. Kühling, P. Liebing, F. T. Edelmann,* C. Wickleder,* Bright Photoluminescence of [{(Cpt-Bu2)2Ce(µ-Cl)}2]: A Valuable Tool for the Determination of the Oxidation State of Cerium.

Chem. Asian J. 2018, 13, 1038-1044; doi:10.1002/asia.201701818

V. K. Gramm, A. Schuy, M. Suta, C. Wickleder, C. Sternemann, U. Ruschewitz,* Completing the Series: New MOFs of Composition [RE2(ADC)3(H2O)6] ∙ 2H2O with RE = Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Y and ADC2- = Acetylenedicarboxylate (-O2C-CºC-CO2-).

Z. Anorg. Allg. Chem. 2018, 644, 127-135; doi:10.1002/zaac.201700361

P. Polzin, I. V. Eliani, J. Ströh, M. Braun, N. Rüser, N. Heidenreich, P. Rönfeldt, F. Bertram, C. Näther, S. Wöhlbrandt, M. Suta, H. Terraschke,* From ligand exchange to reaction intermediates: What does really happen during synthesis of emissive complexes?

Phys. Chem. Chem. Phys. 2018, 20, 7428-7437; doi:10.1039/C7CP07142F;

Inside front cover: Phys. Chem. Chem. Phys. 2018, 20, 7366; doi:10.1039/C8CP90060D

J. Olchowka, O. Mentré,* H. Kabbour, M. Colmont, M. Adlung, M. Suta, C. Wickleder,* Bonding Scheme and Optical Properties in BiM2O2(PO4) (M = Cd, Mg, Zn): Experimental and Theoretical Analysis. Chem Eur. J. 2017, 23, 15694-15703; doi:10.1002/chem.201702373

J. Olchowka, M. Suta, C. Wickleder,* Green Synthesis of Small Nanoparticles of A2SiF6 (A = Li – Cs) using Ionic Liquids as Solvent and Fluorine Source: A Novel Simple Approach without HF. Chem. Eur. J. 2017, 23, 12092-12095; doi:10.1002/chem.201702375; Frontispiece: Chem. Eur. J. 2017, 23, 12092; doi:10.1002/chem.201785067

M. Suta, M. Kühling, P. Liebing, F. T. Edelmann,* C. Wickleder,* Photoluminescence properties of the “bent sandwich-like” compounds [Eu(TpiPr2)2] and [Yb(TpiPr2)2] – Intermediates between nitride-based phosphors and metallocenes. J. Lumin. 2017, 187, 62-68; doi:10.1016/j.jlumin.2017.02.054

M. Suta, T. Senden, J. Olchowka, M. Adlung, A. Meijerink,* C. Wickleder,* Decay times of the spin-forbidden and spin-enabled transitions of Yb2+ doped in CsCaX3 and CsSrX3 (X = Cl, Br, I). Phys. Chem. Chem. Phys. 2017, 19, 7188-7194; doi:10.1039/C7CP00581D        

M. Suta, C. Wickleder,* Spin Crossover of Yb2+ in CsCaX3 and CsSrX3 (X = Cl, Br, I) – A Guideline to Novel Halide-Based Scintillators. Adv. Funct. Mater. 2017, 27, 1602783; doi:10.1002/adfm.201602783

M. Suta, W. Urland, C. Daul, C. Wickleder,* Photoluminescence properties of Yb2+in CsCaX3 and CsSrX3 (X = Cl, Br, I) – a comparative study.

Phys. Chem. Chem. Phys. 2016, 18, 13196-13208; doi:10.1039/C6CP00085A;

Inside back cover: Phys. Chem. Chem. Phys. 2016, 18, 13719; doi:10.1039/C6CP90125E

H. Ramanantoanina, F. Cimpoesu,* C. Göttel, M. Sahnoun, B. Herden, M. Suta, C. Wickleder, C. Daul,* W. Urland,* Prospecting Lighting Applications with Ligand Field Tools and Density Functional Theory: A First-Principles Account of the 4f7-4f65d1 Luminescence of CsMgBr3:Eu2+.

Inorg. Chem. 2015, 54, 8319-8326; doi:10.1021/acs.inorgchem.5b00988

M. Kühling, C. Wickleder,* M. J. Ferguson, C. G. Hrib, R. McDonald, M. Suta, L. Hilfert, J. Takats,* F. T. Edelmann,* Investigation of the “bent sandwich-like” divalent lanthanide pyrazolylborates Ln(TpiPr2)2 (Ln = Sm, Eu, Yb).

New. J. Chem. 2015, 39, 7617-7625; doi:10.1039/C5NJ00568J

M. Suta, C. Wickleder,* Photoluminescence of Eu2+ in CsMI3 (M = Mg, Ca, Sr) – a spectroscopic probe on structural distortions

J. Mater. Chem. C 2015, 3, 5233-5245; doi:10.1039/C5TC00515A

H. Terraschke, M. Suta, M. Adlung, S. Mammadova, N. Musayeva, R. Jabbarov, M. Nazarov, C. Wickleder,* SrAl2O4:Eu2+(, Dy3+) Nanosized Particles: Synthesis and Interpretation of Temperature-Dependent Optical Properties

J. Spectrosc. 2015, Article ID 541958, 1-12; doi:10.1155/2015/541958

A. García-Fuente, F. Cimpoesu, H. Ramanantoanina, B. Herden, C. Daul, M. Suta, C. Wickleder, W. Urland,* A ligand field theory-based methodology for the characterization of the Eu2+ [Xe]4f65d1 excited states in solid compounds.

Chem. Phys. Lett. 2015, 622, 120-123; doi:10.1016/j.cplett.2015.01.031

[2] M. Suta, P. Larsen, F. Lavoie-Cardinal, C. Wickleder,* Photoluminescence of Eu2+ in CsMBr3 (M = Mg, Ca, Sr) – A novel strategy for the development of low-energy emitting phosphors. J. Lumin. 2014, 149, 35-44; doi:10.1016/j.jlumin.2013.12.040

H. C. Streit, J. Kramer, M. Suta, C. Wickleder,* Red, Green, and Blue Photoluminescence of Ba2SiO4:M (M = Eu3+, Eu2+, Sr2+) Nanophosphors. Materials 2013, 6, 3079-3096; doi:10.3390/ma6083079

Publikationen ohne Peer-Review

M. Suta, G. Thiele, Trendbericht Festkörperchemie 2023.

Nachr. Chem. 2023, 71, 56-63, doi:10.1002/nadc.20234132410 

 

M. Suta, J. George, Ungewöhnliche Oxidationsstufen, (un)gewöhnliche Maßnahmen. Nachr. Chem. 2021, 69, 73-78, doi:10.1002/nadc.20214109053

H. Stein, M. Suta, J. George, Die Materialsynthesemaschine. Nachr. Chem. 2020, 68, 66-69, doi:10.1002/nadc.20204096061

M. Suta, J. George, Temperatur mit Licht messen. Nachr. Chem. 2020, 68, 68-73, doi:10.1002/nadc.20204096060

J. George, M. Suta, Vorhersagen aus Hochdurchsatzstudien. Nachr. Chem. 2020, 68, 80-83, doi:10.1002/nadc.20204096056

M. Suta, J. George, Das Rezept für schmalbandige Leuchtstoffe. Nachr. Chem. 2020, 68, 54-58, doi:10.1002/nadc.20204096059

J. George, M. Suta, Neue Materialien vorhersagen: Maschinelles Lernen als Werkzeug? Nachr. Chem. 2020, 68, 49-52, doi:10.1002/nadc.20204093535

O. Clemens, N. Kunkel, M. Suta, Sieh mal, seltene Erden. Nachr. Chem. 2019, 67, 71-75; doi:10.1002/nadc.20194089019

Verfasste Buchkapitel und Bücher

Verantwortlichkeit: